Студопедия.Орг Главная | Случайная страница | Контакты | Заказать
 

Загадка phi



Phi — число, которое мы получаем при сравнении одной части какого-либо предмета с другой его частью, после чего этот предмет делится определенным образом. Результатом сравнения является рацио.

В то время как существует неограниченное количество способов деления предмета на две части разных размеров, число, которое стало незаменимым во Вселенной, было разгадано сотни лет назад. В то время это были названия: от золотого сечения и небесного рацио до золотого рацио. Несмотря на то что названия могут варьироваться, число, представленное ими, остается одним и тем же: Phi (заглавная буква Р), равное 1,618, и его ближайшее число phi (маленькая буква р), равное 0,618. Оба числа являются видом золотого рацио. В последующих главах мы будем использовать phi, равное 0,618, для вычислений временного кода14. Приведенный выше рисунок показывает пример сущности соотношений.

В начале XIV века Леонардо Фибоначчи, итальянский математик, открыл так называемую бесконечную последовательность чисел, создающую золотое рацио. Следующий пример является лучшим способом демонстрации принципа работы данной последовательности. Первые 20 членов последовательности Фибоначчи: 1; 1; 2; 3; 5; 8;13; 21; 34; 55; 89; 144; 233; 377; 610; 987; 1,597; 2,584; 4, 181; 6,765...

При более подробном изучении каждого числа можно понять, что каждое последующее число появляется в результате суммирования двух предыдущих чисел. Например, 1 + 1=2; 1+2=3; 3+2=5; 5+3=8 и т.д.

Мы также видим, что если разделим любое число в последовательности на предшествующее число, мы получаем число, близкое к золотому рацио, но не точное значение золотого рацио. В результате деления мы всегда получаем число, которое либо немного больше, либо немного меньше, но никогда не равное золотому рацио.

Причина заключается в следующем: в результате такого деления мы получаем такое число, которое попадает в класс чисел, которые просто не могут существовать согласно нашему представлению о числах. (Это иррациональное число, что значит, оно не может быть правильной дробью.)15 Следовательно, каждое число в последовательности связано с золотым рацио. Чем большее число мы делим, тем ближе к 1,618 получаем число.

И вновь лучший способ проиллюстрировать, каким образом природа приближается к золотому рацио, это привести пример. Ниже приведены примеры, показывающие, что рацио каждой пары чисел Фибоначчи либо немного больше, либо немного меньше самого золотого рацио:


Наверх

Warning: Unknown: open(/tmp/sess_583f353b8a164aaab47bde0409752199, O_RDWR) failed: Disk quota exceeded (122) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/tmp) in Unknown on line 0