Студопедия.Орг Главная | Случайная страница | Контакты | Заказать
 

Воспроизводящая функция представляется аппроксимирующим полиномом



где {jj(t)} - система базисных функций.

При одном и том же операторе представления А для восстановления могут использоваться различные операторы В.

Из соотношений (2.3) и (2.4) следует, что произведения [ξj(t)φj(t)] должны иметь размерность, обратную времени.

Методы дискретизации в первую очередь разделяются в зависимости от способа получения координат сигнала.

В случае, когда в качестве весовых функций используются базисные функции [ (t) = jj(t)], координаты с1, c2, ..., cN сигнала u(t) получаются «взвешенным» интегрированием сигнала на некотором интервале времени Т. При этом предполагается, что базисные функции ортогональны и обеспечивают сходимость в среднеквадратичном ряде (2.4) к u(t) при N [условие (1.8)], что дает возможность ограничить число координат в соответствии с заданной погрешностью восстановления.

Предъявляя дополнительные требования к базисным функциям, можно провести дискретизацию различных моделей сигнала. Хотя дискретизации всегда подвергается конкретная реализация случайного процесса и, следовательно, детермированная функция, в большинстве случаев алгоритм дискретизации выбирают неизменным для всего множества реализаций и поэтому он должен опираться на характеристики случайного процесса как модели сигнала.

Методы дискретизации следует рассматривать как с позиций полезности для решения теоретических вопросов передачи и преобразования сигналов, так и с позиций возможности их технической реализации. В теоретическом плане весьма важны методы дискретизации, обеспечивающие минимальное число координат при заданной погрешности воспроизведения. Их называют методами оптимальной или предельной дискретизации.

Если за модель сигнала принять нестационарный случайный процесс, как наиболее полно отражающий свойства реального сигнала, некоррелированность координат, а следовательно, и их минимальное число обеспечивают каноническое разложение этого процесса. В качестве базисных функций jj(t) должны использоваться координатные функции. Коэффициенты разложения сk будут искомыми координатами.

В силу сложности нахождения координатных функций указанная процедура не нашла пока применения в инженерной практике. Поэтому идут по пути упрощения модели, предполагая сигнал стационарным или квазистационарным. Некоррелированные координаты, как и ранее, дает только каноническое разложение, однако определение координатных функций упрощается. В качестве таковых могут быть взяты, например, тригонометрические функции. Разложение процесса на ограниченном интервале времени, превышающем длительность корреляции, принимает вид ряда Фурье, но с коэффициентами-координатами, являющимися случайными величинами (1.95). При дискретизации каждой реализации мы будем получать, естественно, детерминированные координаты.


Наверх