Студопедия.Орг Главная | Случайная страница | Контакты | Заказать
 

Показательный (экспоненциальный) закон распределения



Непрерывная случайная величина Х имеет показательный(экспоненциальный) закон распределения с параметром λ, если ее плотность вероятности имеет вид

Функция распределения случайной величины, распределенной по показательному закону, равна

Кривая распределения р(х) и график функции распределения приведены на рис. 8.13.

Рис. 8.13

Для случайной величины, распределенной по показательному закону

; .

Вероятность попадания в интервал непрерывной случайной величины Х, распределенной по показательному закону

.

Замечание. Показательный закон распределения вероятностей встречается во многих задачах, связанных с простейшим потоком событий. Под потокомсобытий понимают последовательность событий, наступающих одно за другим в случайные моменты. Например, поток вызовов на телефонной станции, поток заявок в системе массового обслуживания и др.

Пример 8.18. Непрерывная величина Х распределена по показательному закону

Найти вероятность попадания значений величины Х в интервал .

Решение.Поскольку , то

Пример 8.19. Записать плотность распределения и функцию распределения показательного закона, если параметр . Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной по этому закону.

Решение.Так как , то плотность распределения

Функция распределения имеет вид

Поскольку для показательного закона

; ,

а по условию , то

.

Пример 8.20. Установлено, что время ремонта магнитофонов есть случайная величина Х, распределенная по показательному закону. Определить вероятность того, что на ремонт магнитофона потребуется не менее 15 дней, если среднее время ремонта магнитофонов составляет 12 дней. Найти плотность вероятности, функцию распределения и среднее квадратическое отклонение случайной величины Х.

Решение.По условию математическое ожидание , откуда параметр . Тогда плотность вероятности и функция распределения имеют вид: ; . Искомую вероятность можно найти, интегрируя плотность вероятности, т.е.

,

но проще использовать функцию распределения

.

Среднее квадратическое отклонение дней.

Пример 8.21. Найти асимметрию показательного распределения.


Наверх